Histone H3 (Acetyl Lys27) 兔多克隆抗体
发表时间:2025-07-24Histone H3 (Acetyl Lys27) 兔多克隆抗体
引言
组蛋白修饰是表观遗传调控的核心机制,其中 H3K27ac(组蛋白H3第27位赖氨酸乙酰化)作为活性增强子的标志物,在基因转录激活、细胞分化及发育中起关键作用[1]。该修饰通过破坏染色质压缩结构,促进转录因子与DNA结合,从而调控基因表达[2]。H3K27ac特异性抗体(如兔多克隆抗体)已成为表观遗传研究的重要工具,广泛应用于染色质免疫沉淀(ChIP)、免疫细胞化学(ICC)等实验[3][4]。
一、抗体基础特性
1. 分子识别特异性
- 靶向H3K27ac位点,对非乙酰化、单/双甲基化H3K27无交叉反应[5]。
- 可区分活性增强子(H3K27ac?)与静息/预备增强子(仅含H3K4me1)[1]。
2. 实验适用性
- ChIP-seq:用于绘制全基因组增强子图谱(如胚胎干细胞分化研究)[1][6]。
- 免疫荧光/组化:检测组织切片(如睾丸、脑肿瘤)中H3K27ac的空间分布[3][7]。
- 稀释比例:典型工作浓度为1:50–1:500(依实验优化)[3][4]。
二、作用机制
1. 表观遗传调控
- H3K27ac与H3K27me3(三甲基化)拮抗:乙酰化中和赖氨酸正电荷,开放染色质;甲基化介导基因沉默[2][8]。
- 协同转录因子(如p300)维持增强子活性,驱动发育相关基因表达[1][9]。
2. 生物学功能
- 干细胞多能性:维持胚胎干细胞活性增强子网络,重置核重编程过程[1]。
- 性别染色体逃逸基因:与RNF8/SCML2协同调控减数分裂中X/Y染色体基因激活[3]。
三、临床应用
1. 疾病诊断标志物
- 胶质瘤分型:H3K27ac与H3K27M突变、H3K27me3联合检测,辅助鉴别儿童弥漫性中线胶质瘤[7]。
- 心肌衰老:端粒缩短导致H3K27ac减少,驱动FOXC1依赖性心肌细胞衰老[4]。
2. 治疗靶点探索
- 动脉粥样硬化:视黄酸信号通过调节H3K27ac重塑平滑肌细胞表型[10]。
- 前列腺癌:JAK-STAT通路异常激活致H3K27ac重分布,促进干细胞样态及耐药性[5]。
四、未来展望
1. 技术创新
- 单细胞表观组学:结合scChIP-seq/scCUT&Tag提升细胞异质性解析[4]。
- 多维组学整合:联合ATAC-seq、RNA-seq揭示H3K27ac动态调控网络[11]。
2. 疾病治疗
- 靶向表观编辑器:开发CRISPR/dCas9-p300乙酰转移酶复合物,精准修复H3K27ac异常[9][10]。
- 天然代谢物调控:利用卟啉代谢物靶向G4结构,间接调控H3K27ac修饰[12]。
结语
H3K27ac兔多克隆抗体是表观遗传研究的关键试剂,其应用深化了对基因调控、疾病机制的理解。随着表观编辑技术与多组学整合分析的发展,该抗体将继续推动精准医疗与靶向治疗创新。
参考文献
1. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Creyghton MP, et al. PNAS. 2010 Nov 24; 107(50):21931–21936. [PMID: 21106759]
2. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Pasini D, et al. Nucleic Acids Research. 2010 Apr 12; 38(15):4958–4962. [PMID: 20385581]
3. RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. Adams SR, et al. Genes & Development. 2018 Feb 01; 32(3-4):255–267. [PMID: 29483155]
4. Proximal telomeric decompaction due to telomere shortening drives FOXC1-dependent myocardial senescence. Li B, et al. Circulation Research. 2024 Apr 18; 134(8):e1–e17. [PMID: 38629201]
5. Ectopic JAK–STAT activation enables the transition to a stem-like and multilineage state conferring AR-targeted therapy resistance. Deng S, et al. Nature Cancer. 2022 Sep 01; 3(9):1071–1089. [PMID: 35931837]
6. GmMDE genes bridge the maturity gene E1 and florigens in photoperiodic regulation of flowering in soybean. Zhai H, et al. Plant Physiol. 2022 Jun 1;189(2):1021-1036. [PMID: 35234946]
7. Proteolipid Protein 2 Overexpression Indicates Aggressive Tumor Behavior and Adverse Prognosis in Human Gliomas. Chen YH, et al. Journal of Neuropathology & Experimental Neurology. 2018 Oct 26; 77(11):1045–1058. [PMID: 30203052]
8. The histone H3K27 methylation mark regulates intestinal epithelial cell density-dependent proliferation and the inflammatory response. Turgeon N, et al. J Cell Biochem. 2013 May;114(5):1203-15. [PMID: 23192652]
9. PHF6 cooperates with SWI/SNF complexes to facilitate transcriptional progression. Mittal P, et al. Nat Commun. 2024 Aug 24;15(1):7303. [PMID: 39181868]
10. Retinoic acid signaling modulates smooth muscle cell phenotypic switching in atherosclerosis through epigenetic regulation of gene expression. Pan H, et al. Nature Cardiovascular Research. 2022 Nov 10; 1(11):1030–1043. [PMID: 36632201]
11. deepTools2: a next generation web server for deep-sequencing data analysis. Ramírez F, et al. Nucleic Acids Research. 2016 Apr 13; 44(W1):W160–W165. [PMID: 27079975]
12. G-quadruplexes sense natural porphyrin metabolites for regulation of gene transcription and chromatin landscapes. Li C, et al. Genome Biol. 2022 Dec 15;23(1):259. [PMID: 36522639]